Dual convergence for penalty proximal point algorithms in convex programming

نویسندگان

  • Felipe Alvarez
  • Miguel Carrasco
  • Thierry Champion
چکیده

We consider an implicit iterative method in convex programming which combines inexact variants of the proximal point algorithm, with parametric penalty functions. We investigate a multiplier sequence which is explicitly computed in terms of the primal sequence generated by the iterative method, providing some conditions on the parameters in order to ensure convergence towards a particular dual optimal solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primal-dual path-following algorithms for circular programming

Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...

متن کامل

A multiplier method with a class of penalty functions for convex programming

We consider a class of augmented Lagrangian methods for solving convex programming problems with inequality constraints. This class involves a family of penalty functions and specific values of parameters p, q, ỹ ∈ R and c > 0. The penalty family includes the classical modified barrier and the exponential function. The associated proximal method for solving the dual problem is also considered. ...

متن کامل

On the convergence of the exponential multiplier method for convex programming

In this paper, we analyze the exponential method of multipliers for convex constrained minimization problems, which operates like the usual Augmented Lagrangian method, except that it uses an exponential penalty function in place of the usual quadratic. We also analyze a dual counterpart, the entropy minimization algorithm, which operates like the proximal minimization algorithm, except that it...

متن کامل

W-convergence of the proximal point algorithm in complete CAT(0) metric spaces

‎In this paper‎, ‎we generalize the proximal point algorithm to complete CAT(0) spaces and show‎ ‎that the sequence generated by the proximal point algorithm‎ $w$-converges to a zero of the maximal‎ ‎monotone operator‎. ‎Also‎, ‎we prove that if $f‎: ‎Xrightarrow‎ ‎]-infty‎, +‎infty]$ is a proper‎, ‎convex and lower semicontinuous‎ ‎function on the complete CAT(0) space $X$‎, ‎then the proximal...

متن کامل

Exploiting Strong Convexity from Data with Primal-Dual First-Order Algorithms

We consider empirical risk minimization of linear predictors with convex loss functions. Such problems can be reformulated as convex-concave saddle point problems, and thus are well suitable for primal-dual first-order algorithms. However, primal-dual algorithms often require explicit strongly convex regularization in order to obtain fast linear convergence, and the required dual proximal mappi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009